The Influence of NiTi File Design Features on the Apically Extruded Debris During Endodontic Treatment A concise reviews


  • Farah B. Al-Saffar student at the Department of Conservative Dentistry, College of Dentistry, Mustansiriyah University
  • Hikmet A. Al-Gharrawi Assistant Professor at the Department of Conservative Dentistry, College of Dentistry, Mustansiriyah University, Baghdad, Iraq



NiTi endodontic file, Apically extruded debris, Design features, Endodontic treatment


Expelling debris and irrigating solution during cleaning and shaping is an inevitable incidence during endodontic treatment. Any irritation of the periapical area can initiate a flareup situation which can affect the prognosis of endodontic treatment. Thus, Controlling the amount of apically extruded debris increases the success rate of endodontic treatment. Furthermore, the incidence of flare-ups during endodontic treatment can be reduced by selecting the NiTi file system with the lowest apically extruded debris. Despite the advances in endodontic file design that aims to conservatively prepare the apical third of root canals, extruding debris toward the apex is still a non-eliminated issue with all instrumentation systems. The purpose of this review is to identify the effect of each design characteristic on the amount of debris expelled beyond the apical foramen. The strategy of this review focused on reviewing specific electronic databases, time, keywords, and standardized methods. Literature reviewing included studies from almost 20 years ago and up to 2022. In conclusion,  the design of the NiTi endodontic file has a significant impact on the amount of apically extruded debris.



Agarwal S, N. R. , S. U. (2018). NiTi Endodontics: Contemporary Views Reviewed. Austin J Dent, 5(4). Retrieved from

Al Omari, T., El-Farraj, H., Arıcan, B., & Atav Ateş, A. (2022). Apical debris extrusion of full-sequenced rotary systems in narrow ribbon-shaped canals. Australian Endodontic Journal, 48(2), 245–250. doi:10.1111/aej.12540

Amaral, A. P., Limongi, P. B. O. C., Fontana, C. E., Martin, A. S. De, Bueno, C. E. D. S., & Pinheiro, S. L. (2019). Debris Apically Extruded by Two Reciprocating Systems: A Comparative Quantitative Study. European Journal of Dentistry, 13(4), 625. doi:10.1055/S-0039-3400550

Arias, A., & Peters, O. A. Present status and future directions: Canal shaping. International Endodontic Journal, 55(S3), 637–655. doi:10.1111/iej.13698

Azim, A. A., Wang, H. H., Tarrosh, M., Azim, K. A., & Piasecki, L. (2018). Comparison between Single-file Rotary Systems: Part 1—Efficiency, Effectiveness, and Adverse Effects in Endodontic Retreatment. Journal of Endodontics, 44(11), 1720–1724. doi:10.1016/j.joen.2018.07.022

Bürklein, S., & Schäfer, E. (2012). Apically extruded debris with reciprocating single-file and full-sequence rotary instrumentation systems. Journal of Endodontics, 38(6), 850–852. doi:10.1016/j.joen.2012.02.017

Capar, I. D., Arslan, H., Akcay, M., & Ertas, H. (2014). An in vitro comparison of apically extruded debris and instrumentation times with protaper universal, protaper next, twisted file adaptive, and hyflex instruments. Journal of Endodontics, 40(10), 1638–1641. doi:10.1016/j.joen.2014.04.004

Caviedes-Bucheli, J., Castellanos, F., Vasquez, N., Ulate, E., & Munoz, H. R. (2016). The influence of two reciprocating single-file and two rotary-file systems on the apical extrusion of debris and its biological relationship with symptomatic apical periodontitis. A systematic review and meta-analysis. International Endodontic Journal, 49(3), 255–270. doi:10.1111/iej.12452

Diemer, F., & Calas, P. (2004). Effect of pitch length on the behavior of rotary triple helix root canal instruments. Journal of Endodontics, 30(10), 716–718. doi:10.1097/01.DON.0000125877.26495.69

Dincer, A., Guneser, M., & Arslan, D. (2017). Moreover, a study concluded that increasing the diameter of the instrument’s tip results in more debris pushed beyond the apical foramen 19. Journal of Conservative Dentistry : JCD, 20(5), 322. doi:10.4103/JCD.JCD_407_16

Doğanay Yıldız, E., & Arslan, H. (2019). The effect of blue thermal treatment on endodontic instruments and apical debris extrusion during retreatment procedures. International Endodontic Journal, 52(11), 1629–1634. doi:10.1111/iej.13161

Eliasz, W., Czarnecka, B., & Surdacka, A. (2021). Apical extrusion of debris during root canal preparation with protaper next, waveone gold and twisted files. Materials, 14(21), 1–7. doi:10.3390/ma14216254

Elmsallati, E. A., Wadachi, R., & Suda, H. (2009). Extrusion of debris after use of rotary nickel-titanium files with different pitch: a pilot study. Australian Endodontic Journal : The Journal of the Australian Society of Endodontology Inc, 35(2), 65–69. doi:10.1111/J.1747-4477.2008.00128.X

Felt, R. A., Moser, J. B., & Heuer, M. A. (1982). Flute design of endodontic instruments: its influence on cutting efficiency. Journal of Endodontics, 8(6), 253–259. doi:10.1016/S0099-2399(82)80335-X

Frota, M. M. A., Bernardes, R. A., Vivan, R. R., Vivacqua-Gomes, N., Duarte, M. A. H., & Vasconcelos, B. C. de. (2018). Debris extrusion and foraminal deformation produced by reciprocating instruments made of thermally treated NiTi wires. Journal of Applied Oral Science, 26. doi:10.1590/1678-7757-2017-0215

Grande, N., Plotino, G., Butti, A., & L, B. (2005). Modern endodontic NiTi systems: Morphological and technical characteristics part I:" New generation" NiTi systems. Retrieved June 15, 2022, from

Ha, J. H., Cheung, G. S. P., Versluis, A., Lee, C. J., Kwak, S. W., & Kim, H. C. (2015). ‘Screw-in’ tendency of rotary nickel–titanium files due to design geometry. International Endodontic Journal, 48(7), 666–672. doi:10.1111/IEJ.12363

Ha, J.-H., Kwak, S. W., Kim, S.-K., & Kim, H.-C. (2016). Screw-in forces during instrumentation by various file systems. Restorative Dentistry & Endodontics, 41(4), 304. doi:10.5395/RDE.2016.41.4.304

Jordan, L., Bronnec, F., & Machtou, P. (2021). Endodontic Instruments and Canal Preparation Techniques. In Endodontic Materials in Clinical Practice (pp. 81–131). doi:10.1002/9781119513568.ch4

Kharouf, N., Pedullà, E., Nehme, W., Akarma, K., Mercey, A., Gros, C. I., … Mancino, D. (2022). Apically Extruded Debris in Curved Root Canals Using a New Reciprocating Single-File Shaping System. Journal of Endodontics, 48(1), 117–122. doi:10.1016/j.joen.2021.10.002

Kim, H. C., Kim, H. J., Lee, C. J., Kim, B. M., Park, J. K., & Versluis, A. (2009). Mechanical response of nickel-titanium instruments with different cross-sectional designs during shaping of simulated curved canals. International Endodontic Journal, 42(7), 593–602. doi:10.1111/J.1365-2591.2009.01553.X

Koçak, S., Koçak, M. M., Saǧlam, B. C., Türker, S. A., Saǧsen, B., & Er, Ö. (2013). Apical extrusion of debris using self-adjusting file, reciprocating single-file, and 2 rotary instrumentation systems. Journal of Endodontics, 39(10), 1278–1280. doi:10.1016/j.joen.2013.06.013

Koch K, B. D. (2002). Real world endo: design features of rotary files and how they affect clinical performance. Oral Health, 92(February), 39–49.

Liang, Y., & Yue, L. (2022). Evolution and development: engine-driven endodontic rotary nickel-titanium instruments. International Journal of Oral Science, 14(1). doi:10.1038/S41368-021-00154-0

Marchiori, M., Corrêa, A. M. Y., Tomazinho, F. S. F., Gabardo, M. C. L., Mattos, N. H. R., Fariniuk, L. F., & Baratto-Filho, F. (2021). Influence of different reciprocating systems on the apical extrusion of debris in flat-oval canals. Brazilian Journal of Oral Sciences, 20, 1–8. doi:10.20396/BJOS.V20I00.8663781

Melo, M. C. C., Pereira, E. S. J., Viana, A. C. D., Fonseca, A. M. A., Buono, V. T. L., & Bahia, M. G. A. (2008). Dimensional characterization and mechanical behaviour of K3 rotary instruments. International Endodontic Journal, 41(4), 329–338. doi:10.1111/J.1365-2591.2007.01368.X

Mustafa, R., al Omari, T., Al-Nasrawi, S., al Fodeh, R., Dkmak, A., & Haider, J. (2021). Evaluating In Vitro Performance of Novel Nickel-Titanium Rotary System (TruNatomy) Based on Debris Extrusion and Preparation Time from Severely Curved Canals. Journal of Endodontics, 47(6), 976–981. doi:10.1016/j.joen.2021.03.003

Nevares, G., Xavier, F., Gominho, L., Cavalcanti, F., Cassimiro, M., Romeiro, K., … Albuquerque, D. (2015). Apical Extrusion of Debris Produced during Continuous Rotating and Reciprocating Motion. Scientific World Journal, 2015, 5. doi:10.1155/2015/267264

Schäfer, Edgar. (2001). Relationship between design features of endodontic instruments and their properties. Part 3. Resistance to bending and fracture. Journal of Endodontics, 27(4), 299–303. doi:10.1097/00004770-200104000-00018

Santa-Rosa, C. C., Resende, P. D., Peixoto, I. F. da C., Buono, V. T. L., Viana, A. C. D., & Bahia, M. G. de A. (2018). Evaluating the cutting efficiency of NiTi instruments with reciprocating motions TT - Avaliação da eficiência de corte de instrumentos NiTi com movimento reciprocante. Arq. Odontol, 54, 1–8. Retrieved from

Schäfer, Edgar. (1999). Relationship between design features of endodontic instruments and their properties. Part 2. Instrumentation of curved canals. Journal of Endodontics (Vol. 25). usa .

Sch~ifer, E., Dr, P.-D., & Dent, M. (1999). Relationship Between Design Features of Endodontic Instruments and Their Properties. Part 1. Cutting Efficiency (Vol. 25).

Schäfer, E., Erler, M., & Dammaschke, T. (2006). Comparative study on the shaping ability and cleaning efficiency of rotary Mtwo instruments. Part 1. Shaping ability in simulated curved canals. International Endodontic Journal, 39(3), 196–202. doi:10.1111/j.1365-2591.2006.01074.x

Seltzer, S., & Naidorf, I. J. (2004). Flare-ups in endodontics: II. Therapeutic measures. 1985. Journal of Endodontics, 30(7), 482–488. doi:10.1097/00004770-200407000-00006

Singbal, K., Jain, D., Raja, K., & Hoe, T. M. (2017). Comparative evaluation of apically extruded debris during root canal instrumentation using two Ni-Ti single file rotary systems: An in vitro study. Journal of Conservative Dentistry : JCD, 20(2), 64. doi:10.4103/0972-0707.212236

Tanalp, J. (2022). A critical analysis of research methods and experimental models to study apical extrusion of debris and irrigants. International Endodontic Journal, 55(S1), 153–177. doi:10.1111/iej.13686

Tanalp, J., Kaptan, F., Sert, S., Kayahan, B., & Bayirl, G. (2006). Quantitative evaluation of the amount of apically extruded debris using 3 different rotary instrumentation systems. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, 101(2), 250–257. doi:10.1016/j.tripleo.2005.03.002

Tasdemir, T., Er, K., Çelik, D., & Aydemir, H. (2010). An in vitro comparison of apically extruded debris using three rotary nickel-titanium instruments. Journal of Dental Sciences, 5(3), 121–125. doi:10.1016/S1991-7902(10)60017-7

Zhang, E. W., Cheung, G. S. P., & Zheng, Y. F. (2010). Influence of cross-sectional design and dimension on mechanical behavior of nickel-titanium instruments under torsion and bending: A numerical analysis. Journal of Endodontics, 36(8), 1394–1398. doi:10.1016/j.joen.2010.04.017




How to Cite

B. Al-Saffar, F. ., & A. Al-Gharrawi, H. (2023). The Influence of NiTi File Design Features on the Apically Extruded Debris During Endodontic Treatment A concise reviews. Mustansiria Dental Journal, 19(2), 290–300.