Digital Techniques for Construction of Maxillofacial Prosthesis

Authors

  • Marwah Hussein Abdulsattar Assist.lect, Department of Prosthetic Dental Techniques,College of Health and Medical Techniques,Middle Technical University, Baghdad, Iraq
  • SARA ABDULBASIT TURKI Assist.lect, Department of Prosthetic Dental Techniques,College of Health and Medical Techniques,Middle Technical University, Baghdad, Iraq

DOI:

https://doi.org/10.32828/mdj.v19i1.1005

Keywords:

Ocular prosthetic, Polymethylmethacrylate, Eye prosthesis, CAD-CAM techniques

Abstract

Physiological flaws that impair appearances or functioning and prohibit a person from having a functional life often lead to the person seeking therapy that will restore an adequate standard of normality. The eye had been referred to several writers throughout history as the most priceless of endowments. It brings the whole outside world into our awareness that provides the deal with life, character, or respect. Consequently, the disappearance of an eye has traditionally been thought of as the ultimate sorrow as well as calls for prompt restoration so that the sufferer might resume living normally. Ocular prostheses use artificial material to simulate biological structure to provide the appearance of such a completely functional, regular eye as well as its surrounding structures. The precise replica of color, shape, or size is thus highly stressed in order to just provide people reality or harmony.

The custom-made acrylics ophthalmic prosthetic or the implantation-maintained system are available as treatments. A bespoke ocular prosthetic is used because it offers the advantages of tight tissues interface adaptability with optimal convenience. This review outlines a more straightforward method for creating personalized ophthalmic prostheses.

References

Hatamleh M.M., Abbariki M., Alqudah N., Cook A.E. Survey of ocular prosthetics rehabilitation in the United Kingdom, part 1: Anophthalmic patients’ aetiology, opinions, and attitudes. J. Craniofac. Surg. 2017;28:1293–1296. doi: 10.1097/SCS.0000000000003370.

Santos D.M., Nagay B.E., da Silva E.V., Bonatto Lda R., Sonego M.V., Moreno A., Rangel E.C., da Cruz N.C., Goiato M.C. In vitro analysis of different properties of acrylic resins for ocular prosthesis submitted to accelerated aging with or without photopolymerized glaze. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;69:995–1003. doi: 10.1016/j.msec.2016.07.081.

Othayoth A.K., Srinivas B., Murugan K., Muralidharan K. Poly(methyl methacrylate)/polyphosphate blends with tunable refractive indices for optical applications. Opt. Mater. 2020;104:109841. doi: 10.1016/j.optmat.2020.109841.

Patel S., Tutchenko L. The refractive index of the human cornea: A review. Contact Lens Anterior Eye. 2019;42:575–580. doi: 10.1016/j.clae.2019.04.018.

Chae, M. P. et al. Emerging Applications of Bedside 3D Printing in Plastic Surgery. Front Surg 2, 25, https://doi.org/10.3389/fsurg.2015.00025 (2015).

Hoy, M. B. 3D printing: making things at the library. Med Ref Serv Q 32, 94–99, https://doi.org/10.1080/02763869.2013.749139 (2013).

Huang, W. & Zhang, X. 3D Printing: Print the future of ophthalmology. Invest Ophthalmol Vis Sci 55, 5380–5381, https://doi.org/10.1167/iovs.14-15231 (2014).

Hoang, D., Perrault, D., Stevanovic, M. & Ghiassi, A. Surgical applications of three-dimensional printing: a review of the current literature & how to get started. Ann Transl Med 4, 456, https://doi.org/10.21037/atm.2016.12.18 (2016).

Marro, A., Bandukwala, T. & Mak, W. Three-Dimensional Printing and Medical Imaging: A Review of the Methods and Applications. Curr Probl Diagn Radiol 45, 2–9, https://doi.org/10.1067/j.cpradiol.2015.07.009 (2016).

Ruiters, S., Sun, Y., de Jong, S., Politis, C. & Mombaerts, I. Computer-aided design and three-dimensional printing in the manufacturing of an ocular prosthesis. Br J Ophthalmol 100, 879–881, https://doi.org/10.1136/bjophthalmol-2016-308399 (2016).

Alam, M. S., Sugavaneswaran, M., Arumaikkannu, G. & Mukherjee, B. An innovative method of ocular prosthesis fabrication by bio-CAD and rapid 3-D printing technology: A pilot study. Orbit 36, 223–227, https://doi.org/10.1080/01676830.2017.1287741 (2017).

Chen, J., Wu, X., Wang, M. Y. & Li, X. 3D shape modeling using a self-developed hand-held 3D laser scanner and an efficient HT-ICP point cloud registration algorithm. Opt Laser Technol 45, 414–423, https://doi.org/10.1016/j.optlastec.2012.06.015 (2013).

Ko, J. et al. Hydrophilic surface modification of poly(methyl methacrylate)-based ocular prostheses using poly(ethylene glycol) grafting. Colloids Surf B Biointerfaces 158, 287–294, https://doi.org/10.1016/j.colsurfb.2017.07.017 (2017).

Petrovic, V. et al. Additive layered manufacturing: sectors of industrial application shown through case studies. Int J Prod Res 49, 1061–1079, https://doi.org/10.1080/00207540903479786 (2011).

Finnes, T. High Definition 3D Printing–Comparing SLA and FDM Printing Technologies. The Journal of Undergraduate Research 13, 3 (2015).

Lee, J.-Y. et al. The potential to enhance membrane module design with 3D printing technology. J Memb Sci 499, 480–490, https://doi.org/10.1016/j.memsci.2015.11.008 (2016).

Park, J. H., Jung, J. W., Kang, H.-W. & Cho, D.-W. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process. Biofabrication 6, 025003, https://doi.org/10.1088/1758-5082/6/2/025003 (2014).

Mitteramskogler, G. et al. Light curing strategies for lithography-based additive manufacturing of customized ceramics. Addit Manuf 1, 110–118, https://doi.org/10.1016/j.addma.2014.08.003 (2014).

Kang, H.-W. & Cho, D.-W. Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity. Tissue Eng Part C Methods 18, 719–729, https://doi.org/10.1089/ten.tec.2011.0621 (2012)

Kan, C.-W. CO 2 laser treatment as a clean process for treating denim fabric. J Clean Prod 66, 624–631, https://doi.org/10.1016/j.jclepro.2013.11.054 (2014).

Burge, D., Gordeladze, N., Bigourdan, J.-L. & Nishimura, D. In NIP & Digital Fabrication Conference. 205–208 (Society for Imaging Science and Technology).

Salesin, E. & Burge, D. In NIP & Digital Fabrication Conference. 197–200 (Society for Imaging Science and Technology).

Raj N., Singh M., Raj V., Anwar M., Kumar L. Prevalence of ocular defects among patients visiting in an institutionalized hospital setting: A cross-sectional study. Natl. J. Maxillofac. Surg. 2016;7:67–70.

Hatamleh M.M., Abbariki M., Alqudah N., Cook A.E. Survey of ocular prosthetics rehabilitation in the united kingdom, part 1: Anophthalmic patients’ aetiology, opinions, and attitudes. J. Craniofac. Surg. 2017;28:1293–1296. doi: 10.1097/SCS.0000000000003370.

Kord Valeshabad A., Naseripour M., Asghari R., Parhizgar S.H., Parhizgar S.E., Taghvaei M., Miri S. Enucleation and evisceration: Indications, complications and clinicopathological correlations. Int. J. Ophthalmol. 2014;7:677–680.

Yousuf S.J., Jones L.S., Kidwell E.D., Jr. Enucleation and evisceration: 20 years of experience. Orbit. 2012;31:211–215. doi: 10.3109/01676830.2011.639477.

Sabel B.A., Wang J., Cárdenas-Morales L., Faiq M., Heim C. Mental stress as consequence and cause of vision loss: The dawn of psychosomatic ophthalmology for preventive and personalized medicine. EPMA J. 2018;9:133–160. doi: 10.1007/s13167-018-0136-8.

Goiato M.C., Nicolau E.I., Mazaro J.V., Dos Santos D.M., Vedovatto E., Zavanelli A.C., Filho H.G., Pellizzer E.P. Mobility, aesthetic, implants, and satisfaction of the ocular prostheses wearers. J. Craniofac. Surg. 2010;21:160–164. doi: 10.1097/SCS.0b013e3181cfe898.

Amornvit P., Rokaya D., Shrestha B., Srithavaj T. Prosthetic rehabilitation of an ocular defect with post-enucleation socket syndrome: A case report. Saudi Dent. J. 2014;26:29–32. doi: 10.1016/j.sdentj.2013.12.006. [Europe PMC free article]

Cevik P., Dilber E., Eraslan O. Different techniques in fabrication of ocular prosthesis. J. Craniofac. Surg. 2012;23:1779–1781. doi: 10.1097/SCS.0b013e31826701bb.

Sethi T., Kheur M., Haylock C., Harianawala H. Fabrication of a custom ocular prosthesis. Middle East Afr. J. Ophthalmol. 2014;21:271–274. doi: 10.4103/0974-9233.134694.

Ko J., Kim S.H., Baek S.W., Chae M.K., Yoon J.S. Semi-automated fabrication of customized ocular prosthesis with three-dimensional printing and sublimation transfer printing technology. Sci. Rep. 2019;9:2968. doi: 10.1038/s41598-019-38992-y.

Lanzara R., Thakur A., Viswambaran M., Khattak A. Fabrication of ocular prosthesis with a digital customization technique-a case report. J. Family Med. Prim. Care. 2019;8:1239–1242. doi: 10.4103/jfmpc.jfmpc_133_19.

Dave T.V., Nayak A., Palo M., Goud Y., Tripuraneni D., Gupta S. Custom ocular prosthesis-related concerns: Patient feedback survey-based report vis-à-vis objective clinical grading scales. Orbit. 2021;40:357–363.doi: 10.1080/01676830.2020.1797826.

Shrivastava S., Agarwal S., Shrivastava K.J., Tyagi P. Custom-made ocular prosthesis for a pediatric patient with unilateral anopthalmia: A case report. J. Indian Soc. Pedod. Prev. Dent. 2013;31:194–196. doi: 10.4103/0970-4388.117973.

Da Costa G.C., Aras M.A., Chalakkal P., Da Costa M.C. Ocular prosthesis incorporating ips e-max press scleral veneer and a literature review on non-integrated ocular prosthesis. Int. J. Ophthalmol. 2017;10:148–156. [Europe PMC free article]

Moreno A., Goiato M.C., Oliveira K.F., Iyda M.G., Haddad M.F., de Carvalho Dekon S.F., dos Santos D.M. Color stability of the artificial iris button in an ocular prosthesis before and after acrylic resin polymerization. Contact Lens Anterior Eye. 2015;38:414–418. doi: 10.1016/j.clae.2015.05.003.

Moreno A., Goiato M.C., dos Santos D.M., Haddad M.F., Pesqueira A.A., Bannwart L.C. Effect of different disinfectants on the microhardness and roughness of acrylic resins for ocular prosthesis. Gerodontology. 2013;30:32–39. doi: 10.1111/j.1741-2358.2012.00642.x.

Bannwart L.C., Goiato M.C., dos Santos D.M., Moreno A., Pesqueira A.A., Haddad M.F., Andreotti A.M., de Medeiros R.A. Chromatic changes to artificial irises produced using different techniques. J. Biomed. Opt. 2013;18:58002. doi: 10.1117/1.JBO.18.5.058002.

26. Zafar M.S. Prosthodontic applications of polymethyl methacrylate (pmma): An update. Polymers. 2020;12:2299.doi: 10.3390/polym12102299. [Europe PMC free article]

de Ortueta D., Rüden D., Magnago T.Influence of stromal refractive index and hydration on corneal laser refractive surgery. J. Cataract Refract. Surg. 2014; 40: 897-904.

Smadja D, Zalevsky Z, Lellouche J-P M. https://phys.org/news/2018-03-nano-drops-nearsightedness-farsightedness.html#jCp.

de Ortueta D., Rüden D., Magnago T.Influence of stromal refractive index and hydration on corneal laser refractive surgery. J. Cataract Refract. Surg. 2014; 40: 897-904.

Downloads

Published

28.06.2023

How to Cite

Hussein Abdulsattar, M. ., & ABDULBASIT TURKI, S. . (2023). Digital Techniques for Construction of Maxillofacial Prosthesis . Mustansiria Dental Journal, 19(1), 124–143. https://doi.org/10.32828/mdj.v19i1.1005