The effect of thermo-cycling on fracture strength of 3D printing and PMMA interim prostheses

Authors

  • Maab Qassim Hadi Department of Prosthetic Dental Technology, College of Health and Medical Technology, Middle Technical University
  • Suha Fadhil Dulaimi Assistant prof. in Middle Technical university- College of Health and Medical Technologies

DOI:

https://doi.org/10.32828/mdj.v18i2.924

Keywords:

PMMA acrylic, interim restoration, 3D printing, thermo cycling

Abstract

Aim of the study: This study compared the fracture resistance of three-dimensional printing (3D) interim restoration with that polymethylmethacrylate (PMMA), interim restoration.

Materials and methods: In the present study upper molar (dentoform) tooth was prepared for full coverage crowns. The prepared model was digitally scanned by extra-oral scanner. Duplication of the master die into metal dies (chrome cobalt alloy). Totally, 40 samples were divided into two groups (20) using 3D printing (asiga dentatooth resin material), and (20) Polymethylmethacrylate PMMA (integra) resin material. Ten samples from each group were subjected to thermo-cycles (1250 cycles, 5-55 °C). The fracture resistance was then measured for all samples with a universal testing machine.

Results: In SPSS, the mean ± Stander deviation values of fracture resistance were recorded for the acrylic PMMA group before thermo-cycling (1703.30 ±376.659 Newton) and after thermo-cycling (1460.30 ±364.260 Newton), while the mean ± Stander deviation values were recorded for 3D printing group before thermo-cycling (1972.50±399.181 Newton) and after thermo-cycling ( 2284.10±239.001Newton). It was found that 3D printing recorded a significantly higher fracture resistance mean than PMMA groups.

Conclusion: 3D printing interim prostheses recorded higher fracture resistance compared with PMMA interim prostheses.

References

Ferro, K. J., Morgano, S. M., Driscoll, C. F., freilich, M. A., Guckes, A. D., knoernschild, K. L., Mcgarry, T. J. & Twain, M. 2017. The glossary of prosthodontic terms.

Miura, S., Fujisawa, M., Komine, F., Maseki, T., Ogawa, T., Takebe, J. & Nara, Y. J. J. O. O. S. 2019. Importance of interim restorations in the molar region. 19-0102.

Patras, M., Naka, O., Doukoudakis, S., Pissiotis, A. J. J. O. E. & dentistry, R. 2012. Management of provisional restorations' deficiencies: a literature review. 24, 26-38.

Abad-coronel, C., Carrera, E., Mena Córdova, N., Fajardo, J. I. & ALIAGA, P. J. M. 2021. Comparative analysis of fracture resistance between cad/cam materials for interim fixed prosthesis. 14, 7791.

Ruse, N. & Sadoun, M. J. J. O. D. R. 2014. Resin-composite blocks for dental CAD/CAM applications. 93, 1232-1234.

Yao, J., LI, J., Wang, Y. & Huang, H. J. T. J. O. P. D. 2014. Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. 112, 649-657.

Javaid, M., Haleem, A. J. J. O. O. B. & Research, C. 2019. Current status and applications of additive manufacturing in dentistry: A literature-based review. 9, 179-185.

Zandinejad, A., Methani, M. M., Schneiderman, E. D., revilla‐león, M. & BDS, D. M. J. J. O. P. 2019. Fracture resistance of additively manufactured zirconia crowns when cemented to implant supported zirconia abutments: an in vitro study. 28, 893-897.

Aharia, C., Gabor, A.-G., Gavrilovici, A., Stan, A. T., Idorasi, L., Sinescu, C. & Negruțiu, M.-L. J. J. O. I. M. 2017. Digital dentistry-3D printing applications. 2, 50-53.

Karaokutan, I., Sayin, G. & Kara, O. J. T. J. O. A. P. 2015. In vitro study of fracture strength of provisional crown materials. 7, 27-31.

Rayyan, M. M., Aboushelib, M., Sayed, N. M., Ibrahim, A. & Jimbo, R. J. T. J. O. P. D. 2015. Comparison of interim restorations fabricated by CAD/CAM with those fabricated manually. 114, 414-419

AL-atyaa, Z. T., Majeed, M. A. J. B. & Journal, P. 2018. Comparative Evaluation of the Marginal and Internal Fitness of Monolithic CAD/CAM Zirconia Crowns Fabricated from Different Conventional Impression Techniques and Digital Impression Using Silicone Replica Technique (An in vitro study). 11, 477-490.

Majeed, M. A., AL-adel, S. K. J. J. O. G. & Conservation, E. R. 2016. Evaluation of the marginal and internal fitness of full contour CAD/CAM crowns made from zirconia, lithium disilicate, zirconia-reinforced lithium silicate and hybrid dental ceramic by silicone replica technique (A comparative In vitro study). 4, 10-20.

Ibrahim, A., EL Shehawy, D. & EL-Naggar, G. J. A. S. D. J. 2020. Fracture resistance of interim restoration constructed by 3D printing versus CAD/CAM technique (In vitro study). 23, e14-e20.

Youness Badr, S., Rayyan, M. & Elshiekh, M. J. E. D. J. 2021. Evaluation of fracture resistance and color stability of innovative esthetic crowns for primary posterior molars. 67, 1879-1886

Suralik, K. M., Sun, J., Chen, C.-Y. & Lee, S. J. J. P. 2020. Effect of fabrication method on fracture strength of provisional implant-supported fixed dental prostheses. 2, 325-332.

Las Casas, E. B. D., Almeida, A. F. D., Cimini Junior, C. A., Gomes, P. D. T. V., Cornacchia, T. P. M. & Saffar, J. M. E. J. J. O. A. O. S. 2007. Determination of tangential and normal components of oral forces. 15, 70-76.

Chacón, J., Caminero, M. A., García-Plaza, E., Núnez, P. J. J. M. & Design 2017. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. 124, 143-157.

TahayerI, A., Morgan, M., Fugolin, A. P., Bompolaki, D., Athirasala, A., Pfeifer, C. S., Ferracane, J. L. & Bertassoni, L. E. J. D. M. 2018. 3D printed versus conventionally cured provisional crown and bridge dental materials. 34, 192-200.

Chung, S., Yap, A., Chandra, S., LIM, C. J. J. O. B. M. R. P. B. A. B. A. O. J. O. T. S. F. B., THE japanese society for biomaterials, T. A. S. F. & biomaterials, T. K. S. F. 2004. Flexural strength of dental composite restoratives: Comparison of biaxial and three‐point bending test. 71, 278-283

bayoumi, A. E.-S., Shokry, T. E. & Mohammed, H. R. J. A.-A. J. O. D. S. 2022. Effect of Thermo-mechanical Loading on The Fracture Resistance of Implant-Supported Provisional FDP Fabricated by CAD/CAM and 3D Printing: An in-vitro study. 25, 31-41.

Reeponmaha, T., Angwaravong, O. & Angwarawong, T. 2020. Comparison of fracture strength after thermo-mechanical aging between

provisional crowns made with CAD/CAM and conventional method. The Journal of Advanced Prosthodontics, 12, 218.

Downloads

Published

28.12.2022

How to Cite

Qassim Hadi , M. ., & Fadhil Dulaimi , . S. . (2022). The effect of thermo-cycling on fracture strength of 3D printing and PMMA interim prostheses. Mustansiria Dental Journal, 18(2), 220–229. https://doi.org/10.32828/mdj.v18i2.924