The antimicrobial effects of Cold Atmospheric Plasma jet on microorganisms causing dental caries (in vitro study)

Authors

  • Ghada Abdul Salam Ibrahim Ph.D. Student, Pedodontic and Preventive dentistry department, College of Dentistry, University of Baghdad/ Baghdad, Iraq
  • Maha Jamal Abbas Professor, PhD in Preventive Dentistry, College of Dentistry, Mustansiriyah University/ Baghdad, Iraq
  • Eaman Ali AL-Rubaee Professor, PhD in clinical Biochemistry, Department of Basic Science, College of Dentistry, University of Baghdad/ Baghdad, Iraq

DOI:

https://doi.org/10.32828/mdj.v19i1.987

Keywords:

Antimicrobial effects, Cold Atmospheric Plasma, Streptococci mutans, Candida albicans

Abstract

Background: The common microorganism in caries process are Streptococcus mutans and Lactobacilli. Candida albicans have correlation with Streptococcus mutans  for enhanced dental caries. Cold Atmospheric Plasma (CAP) is called as non-thermal as result of electrons are more heated than heavy particles which are at room climate. CAP jets are ionized native gas outflow, produced underneath typical pressure through microwaves, high frequency or pulsed direct current employing noble gases. There are many application of CAP in dentistry: in periodontology, implantology, prosthodontic, operative dentistry and in cariology. This study aimed to measure the sensitivity of the S. mutans and C. albicans to CAP jet. Material and methods:  In this experiment, newly developed Cold atmospheric plasma jet (Iraqi made) using argon gas at a Gas flow rate 10 l/min, 175volt and Frequency 2.45 GHz At room temperature such that the nozzle tip had a maximum distance of 2mm from the agar plate. Cold atmospheric plasma effect was tested at different times on the viable numbers of Streptococci mutans and Candida albicans.  Result: Through the irradiation of CAP jet on agar plates the antimicrobial efficacy  for S. mutans and C. albicans was measured at different time the 3, 6, 9  minutes. Multiple pairwise comparisons using Tukey HSD showed there is significant reduction of colony

 

forming unit (CFU) for Streptococci mutans by plasma at all time compared to  control. multiple pairwise comparisons using Tukey HSD  showed there is highly significance differences for C. albicans was observed  for all times  in comparison to control (p<0.01). The data of the current study was analyzed using statistical package for social science (SPSS version 22). Thus, it can be concluded that Cold Atmospheric  plasma (argon gas) jet have anti-microbial efficacy against Streptococci mutans and Candida albicans. but  it effects on Candida albicans  more than on Streptococci mutans.

References

Struzycka I. (2014) The oral microbiome in dental caries. Pol J Microbiol; 63(2):127-35. PMID: 25115106.

Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, Abranches J, Brady LJ. (2019) The Biology of Streptococcus mutans. Microbiol Spectr ;7(1):10.1128. doi: 10.1128/microbiolspec. GPP3-0051-2018.

María Alejandra B, Mariano Daniel O. (2020) Virulence Factors of Streptococcus mutans Related to Dental Caries. Staphylococcus and Streptococcus. IntechOpen. DOI: 10.5772/intechopen.85807.

Journal, Baghdad. (2009) The influence of He-Ne Laser (632.8 nm) on Candida albicans isolated from complete upper dentures: In vitro study. Baghdad Science Journal; 6(4): 790-796. DOI:10.21123/bsj.6.4.790-796

Journal, Baghdad. (2015) The Inhibitory Effect of Lactobacillus acidophilus and Lactobacillus plantarum against Candida albicans Associated with Denture Stomatitis. Baghdad Science Journal; 12: 479-484. DOI:10.21123/bsj.12.3.479-484.

Christina Tsui, Eric F. Kong, Mary Ann Jabra-Rizk. (2016) Pathogenesis of Candida albicans biofilm, Pathogens and Disease, 74(4): ftw018. doi: 10.1093/femspd/ftw018.

Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. (2020) Oral Candidiasis. A Disease of Opportunity. J Fungi (Basel); 6(1):15. Doi: 10.3390/jof6010015.

O'Donnell LE, Millhouse E, Sherry L, Kean R, Malcolm J, Nile CJ, Ramage G. (2015) Polymicrobial Candida biofilms: friends and foe in the oral cavity. FEMS Yeast Res; 15(7):fov077. Doi: 10.1093/femsyr/fov077.

Allison DL, Willems H, Jayatilake J, Bruno VM, Peters BM, Shirtliff ME. (2016) Candida–Bacteria Interactions: Their Impact on Human Disease. Microbiol Spectr; 4(3). DOI: 10.1128/microbiolspec.vmbf-0030-2016.

Ibrahim GA, Al Obaidi WA. (2013) Effect of small cardamom extracts on Mutans streptococci and Candida albicans in comparison to chlorhexidine gluconate and de-ionized water (In vivo study). J Bagh Coll Dent; 25(4):104-108. DOI:10.12816/0015075

Xiao J, Huang X, Alkhers N, Alzamil H, Alzoubi S, Wu TT, Castillo DA, Campbell F, Davis J, Herzog K, Billings R, Kopycka-Kedzierawski DT, Hajishengallis E, Koo H. (2018) Candida albicans and Early Childhood Caries: A Systematic Review and Meta-Analysis. Caries Res; 52 (1-2):102-112. Doi: 10.1159/000481833.

Menon LU, Scoffield JA, Jackson JG and Zhang P (2022) Candida albicans and Early Childhood Caries. Front. Dent. Med; 3:849274. doi: 10.3389/fdmed.2022.84927

Martin M. (2009) From distant stars to dental chairs- Plasmas May Promise Pain-free and durable Restorations. AGD Impact 37: 46.

Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, et al. (2009) Plasma medicine: an introductory review. New J Phys 11: 115012. DOI :10.1088/1367-2630/11/11/115012.

Hoffmann C, Berganza C, Zhang J (2013) Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. Med Gas Res 3: 21. Doi: 10.1186/2045-9912-3-21.

Kieft, I. E., van Berkel, J. J. B. N., Kieft, E. R. & Stoffels, E. (2005) Radicals of plasma needle detected with fluorescent probe. In Plasma Processes and Polymers, chapter 22, pp. 295–308. Edited by R. d’Agostino, P. Favia, C. Oehr & M. R. Wertheimer. Berlin: Wiley-VCH. Kim, S. M. & Kim, J. I. (2006). Decomposition of biological macromolecules by plasma generated with helium and oxygen. J Microbiol 44: 466–47.https://doi.org/10.1002/3527605584.ch22

Lackmann J, Bandow J.E. (2014) Inactivation of microbes and macromolecules by atmospheric-pressure plasma jets. Appl Microbiol Biotechnol; 98: 6205–6213. doi: 10.1007/s00253-014-5781-9.

Ranjan, R.; Krishnamraju, P.V.; Shankar, T.; Gowd, S. (2017) Nonthermal Plasma in Dentistry: An Update. J. Int. Soc. Prev. Community Dent; 7: 71–75. doi: 10.4103/jispcd.JISPCD-29-17.

Masood SH, Mahamed SA. (2020) Effect of plasma treatment on some surface properties of acrylic resin polymer. J Bagh Coll Dent; 32(2): 22-5. DOI: https://doi.org/10.26477/jbcd.v32i2.2890.

Jungbauer G, Moser D, Müller S, Pfister W, Sculean A, Eick S. (2021) The Antimicrobial Effect of Cold Atmospheric Plasma against Dental Pathogens-A Systematic Review of In-Vitro Studies. Antibiotics; 10 (2): 211. DOI:10.3390/antibiotics10020211

Anber LM, Hamad TI. (2021) Effect of plasma treatment on the bond of soft denture liner to conventional and high impact acrylic denture materials. J Bagh Coll Dent; 33(3):9-11. DOI: https://doi.org/10.26477/jbcd.v33i3.2948

Goree J, Liu B, Drake D, Stoffels E. (2007) Killing of S. mutans Bacteria Using a Plasma Needle at Atmospheric Pressure. IEEE Trans Plasma Sci 34: 1317- 1324. DOI:10.1109/PPPS.2007.4345643.

Yang B, Chen J, Yu Q, Li H, Lin M, et al. (2011) Oral bacterial deactivation using a low-temperature atmospheric argon plasma brush. J Dent; 9: 48-56. doi: 10.1016/j.jdent.2010.10.002.

Borges A, Castaldelli N, Kostov K, de Morais Gouvêa Lima G, Lacerda Gontijo A, de Carvalho J, Yzumi Honda R, Yumi Koga-Ito C. (2017) Cold atmospheric pressure plasma jet modulates Candida albicans virulence traits. Clin.Plasma Med; 7: 9–15. https://doi.org/10.1016/j.cpme.2017.06.002

.Sladek REJ, Stoffels E, Walraven R, Tiebeek PJA, Koolhoven RA (2004) Plasma treatment of dental cavities: a feasibility study. IEEE Trans Plasma Sci 32: 1540- 1543. https://doi.org/10.1109/TPS.2004.832636.

Cain D, Hanks H, Weis M, Bottoms C, Lawson J. (2013) Microbiology Laboratory Manual. Collin County Community College District, McKinney, TX.

Abonti TR, Kaku M, Kojima S, Sumi H, Kojima S, Yamamoto T, Yashima Y, Miyahara H, Okino A, Kawata T, Tanne K, Tanimoto K. (2016) Irradiation effects of low temperature multi gas plasma jet on oral bacteria. Dent Mater J; 35(5):822-828. Doi: 10.4012/dmj.2016-062.

Langner I, Kramer A,| Matthes R, Rebert F, Kohler C, Koban I, Hübner N, Kohlmann T, Patrzyk M. (2019) Inhibition of microbial growth by cold atmospheric plasma compared with the antiseptics chlorhexidine digluconate, octenidine dihydrochloride, and polyhexanidePlasma Process Polym: e1800162. https://doi.org/10.1002/ppap.201800162.

Nima G, Harth-Chu E, Hiers RD, et al. (2021) Antibacterial efficacy of non-thermal atmospheric plasma against Streptococcus mutans biofilm grown on the surfaces of restorative resin composites. Scientific Reports; 11(1):23800. DOI: 10.1038/s41598-021-03192-0.

Rupf S, Lehmann A, Hannig M, Schäfer B, Schubert A, Feldmann U, Schindler A. (2010) Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J Med Microbiol; 59(Pt2): 206-212. Doi: 10.1099/jmm.0.013714-0

Downloads

Published

28.06.2023

How to Cite

Abdul Salam Ibrahim, G., Jamal Abbas, M., & Ali AL-Rubaee, . E. . (2023). The antimicrobial effects of Cold Atmospheric Plasma jet on microorganisms causing dental caries (in vitro study). Mustansiria Dental Journal, 19(1), 1–10. https://doi.org/10.32828/mdj.v19i1.987